Publications

ПУБЛИКАЦИИ

Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole

Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole

1974

Journal of Membrane Biology

1974

1974

Journal of Membrane Biology

V. 18, 243–261

V. 18, 243–261

No items found.

doi.org

Abstract

Abstract

АННОТАЦИЯ

АННОТАЦИЯ

The purpose of the work presented in this paper was to determine experimentally the actual mechanism of lipid bilayer conductivity in the presence of tetrachlorotrifluoromethylbenzimidazole (TTFB). The capacitance and conductance of lipid bilayers were measured with a current-clamp method, as a function of equal TTFB concentrations (10−7 to 5×10−5 M) in the two aqueous phases. The voltage across the membrane was measured as a function of time during rectangular current pulses. If the hydrogen buffer capacity of the solution is low, the voltage response to long current pulses has two components. The slow component is due to hydrogen ion concentration changes in the unstirred layers. This component disappears if the buffer capacity is made high enough. Membrane capacitance and conductance can be determined from the fast component of the voltage response. The conductance increases with the square of TTFB concentration (pH 2 to 7) and the capacitance is 0.4 μF/cm2 for the range of concentration used. If solutions of low buffer capacity are used, shifts of hydrogen ion concentrations near the membrane give rise to a complicated dependence of the membrane potential on pH given a unit pH difference between the two aqueous solutions (protonic potential). This dependence can be explained if the membrane permeability for neutral uncoupler molecules (TH) is high enough. The membrane permeability coefficient is determined:PTH=10 cm/sec. In other experiments the dependence of short-circuit current on pH difference between the two solutions was also measured, with the pH value on one side fixed in a given experiment. These complicated nonmonotonic dependences can be described using a mathematical equation with only two parameters: (1) the dissociation constant of TTFB in water (pK=5.2), and (2) the proportionality factor between short-circuit current and TTFB concentration squared. These data can be formally interpreted to mean that the membrane is permeable only to T2H and TH, where T is TTFB anion and H is hydrogen ion. However, this model does not explain the high current values obtained because of the limited rate constant of T2H formation in aqueous solution. An alternative model is proposed. It is shown that the T2H is not formed in aqueous phase but rather within the membrane. The T2H can be the intramembrane charge carrier if its life-time is long enough. If the average life-time is short, current might be carried through the membrane by proton exchange between TH and T, when they collide. This mechanism could also account for the action of uncouplers of oxidative phosphorylation other than TTFB.

The purpose of the work presented in this paper was to determine experimentally the actual mechanism of lipid bilayer conductivity in the presence of tetrachlorotrifluoromethylbenzimidazole (TTFB). The capacitance and conductance of lipid bilayers were measured with a current-clamp method, as a function of equal TTFB concentrations (10−7 to 5×10−5 M) in the two aqueous phases. The voltage across the membrane was measured as a function of time during rectangular current pulses. If the hydrogen buffer capacity of the solution is low, the voltage response to long current pulses has two components. The slow component is due to hydrogen ion concentration changes in the unstirred layers. This component disappears if the buffer capacity is made high enough. Membrane capacitance and conductance can be determined from the fast component of the voltage response. The conductance increases with the square of TTFB concentration (pH 2 to 7) and the capacitance is 0.4 μF/cm2 for the range of concentration used. If solutions of low buffer capacity are used, shifts of hydrogen ion concentrations near the membrane give rise to a complicated dependence of the membrane potential on pH given a unit pH difference between the two aqueous solutions (protonic potential). This dependence can be explained if the membrane permeability for neutral uncoupler molecules (TH) is high enough. The membrane permeability coefficient is determined:PTH=10 cm/sec. In other experiments the dependence of short-circuit current on pH difference between the two solutions was also measured, with the pH value on one side fixed in a given experiment. These complicated nonmonotonic dependences can be described using a mathematical equation with only two parameters: (1) the dissociation constant of TTFB in water (pK=5.2), and (2) the proportionality factor between short-circuit current and TTFB concentration squared. These data can be formally interpreted to mean that the membrane is permeable only to T2H and TH, where T is TTFB anion and H is hydrogen ion. However, this model does not explain the high current values obtained because of the limited rate constant of T2H formation in aqueous solution. An alternative model is proposed. It is shown that the T2H is not formed in aqueous phase but rather within the membrane. The T2H can be the intramembrane charge carrier if its life-time is long enough. If the average life-time is short, current might be carried through the membrane by proton exchange between TH and T, when they collide. This mechanism could also account for the action of uncouplers of oxidative phosphorylation other than TTFB.

chaimatics

Chaimatics

Discovery of links between the biology, physics and mathematics, and founding a new area of studies focused on computations in living systems are his life achievements. Efim Liberman gave the name of “Chaimatics” to this new area of science

I

DNA is the text of a code written for molecular computers of living cells. The notion of “Text” is intrinsically opposite to a random sequence of symbols, and it can exist only inside the system of language. In this case, it is a genetic language, which is isomorphic to a natural language

II

Computations conducted in a living cell are real physical actions, and free energy and time must be spent for completing them. As all living organisms are comprised of cells, this statement is applicable to any control processes implemented in the biosphere

III

Molecular computations are limited by the microscopic scale of a cell and inevitable impact of the computations on formulation of a problem begin solved. The Chaimatics grew from the recognition of the computation reality as the quantum mechanics grew from the recognition of the measurement reality.

IV

A cell creates а quantum computing tool for solving complex problems. This tool utilizes hypersound quanta, and uses the cell cytoskeleton as the computing environment. In such a computer, a price of elementary computation converges to the physical limit, which is Planck’s constant

Chaimatic's statements are simple, but they require a change in the traditional vision, rooted in scientific practice

Read a book

Chapter I

The journey of life in science

chaimatics

хаиматика

хаиматика

Итогом жизни в науке стало установление связей между биологией, физикой, математикой и новая область исследования, посвященная вычислениям в живых системах. Ефим Либерман дал имя новой науке: «Хаиматика»

I

ДНК – это текст программы для молекулярных компьютеров клеток. «Текст» по определению не случайная последовательность знаков и может существовать только внутри языковой системы. В данном случае это генетический язык, изоморфный естественному языку

II

Вычисление в живой клетке является реальным физическим действием и требует затрат свободной энергии и времени. Поскольку все живые организмы состоят из клеток, это относится ко всему управлению, которое осуществляется в биосфере

III

Молекулярные вычисления ограничены микроскопическим объемом клетки и принципиальной возможностью влияния вычисления на условия решаемой задачи: квантовая механика возникла из осознания реальности измерения, Хаиматика - из реальности вычисления

IV

Для решения сложных задач клетка создает устройство квантового вычисления, использующего кванты гиперзвука и клеточный цитоскелет, как вычисляющую среду. Цена вычисления в таком компьютере стремится к физическому пределу – постоянной Планка

Утверждения Хаиматики просты, но они требуют изменения традиционных представлений, принятых в научной практике

Читать книгу

Глава I

Как все начиналось

хаиматика